22 research outputs found

    Reichenbach's Common Cause Principle in Algebraic Quantum Field Theory with Locally Finite Degrees of Freedom

    Full text link
    In the paper it will be shown that Reichenbach's Weak Common Cause Principle is not valid in algebraic quantum field theory with locally finite degrees of freedom in general. Namely, for any pair of projections A and B supported in spacelike separated double cones O(a) and O(b), respectively, a correlating state can be given for which there is no nontrivial common cause (system) located in the union of the backward light cones of O(a) and O(b) and commuting with the both A and B. Since noncommuting common cause solutions are presented in these states the abandonment of commutativity can modulate this result: noncommutative Common Cause Principles might survive in these models

    On the extension of stringlike localised sectors in 2+1 dimensions

    Get PDF
    In the framework of algebraic quantum field theory, we study the category \Delta_BF^A of stringlike localised representations of a net of observables O \mapsto A(O) in three dimensions. It is shown that compactly localised (DHR) representations give rise to a non-trivial centre of \Delta_BF^A with respect to the braiding. This implies that \Delta_BF^A cannot be modular when non-trival DHR sectors exist. Modular tensor categories, however, are important for topological quantum computing. For this reason, we discuss a method to remove this obstruction to modularity. Indeed, the obstruction can be removed by passing from the observable net A(O) to the Doplicher-Roberts field net F(O). It is then shown that sectors of A can be extended to sectors of the field net that commute with the action of the corresponding symmetry group. Moreover, all such sectors are extensions of sectors of A. Finally, the category \Delta_BF^F of sectors of F is studied by investigating the relation with the categorical crossed product of \Delta_BF^A by the subcategory of DHR representations. Under appropriate conditions, this completely determines the category \Delta_BF^F.Comment: 36 pages, 1 eps figure; v2: appendix added, minor corrections and clarification

    Noncommutative causality in algebraic quantum field theory

    Get PDF
    In the paper it will be argued that embracing noncommuting common causes in the causal explanation of quantum correlations in algebraic quantum field theory has the following two beneficial consequences: it helps (i) to maintain the validity of Reichenbach's Common Causal Principle and (ii) to provide a local common causal explanation for a set of correlations violating the Bell inequality

    Kitaev's quantum double model from a local quantum physics point of view

    Full text link
    A prominent example of a topologically ordered system is Kitaev's quantum double model D(G)\mathcal{D}(G) for finite groups GG (which in particular includes G=Z2G = \mathbb{Z}_2, the toric code). We will look at these models from the point of view of local quantum physics. In particular, we will review how in the abelian case, one can do a Doplicher-Haag-Roberts analysis to study the different superselection sectors of the model. In this way one finds that the charges are in one-to-one correspondence with the representations of D(G)\mathcal{D}(G), and that they are in fact anyons. Interchanging two of such anyons gives a non-trivial phase, not just a possible sign change. The case of non-abelian groups GG is more complicated. We outline how one could use amplimorphisms, that is, morphisms A→Mn(A)A \to M_n(A) to study the superselection structure in that case. Finally, we give a brief overview of applications of topologically ordered systems to the field of quantum computation.Comment: Chapter contributed to R. Brunetti, C. Dappiaggi, K. Fredenhagen, J. Yngvason (eds), Advances in Algebraic Quantum Field Theory (Springer 2015). Mainly revie

    Skew Monoidal Monoids

    Full text link
    corecore